Time & Space 169. Time & Space Time & Space

ds2 = c2dt2 - dx2 - dy2 - dz2 = 0

holds for them. It further follows that ds has a value which, for arbitrarily chosen infinitely near space-time points, is independent of the particular inertial system selected. In agreement with this we find that for passing from one inertial system to another, linear equations of transformation hold which do not in general leave the time-values of the events unchanged. It thus became manifest that the four-dimensional continuum of space cannot be split up into a time-continuum and a space-continuum except in an arbitrary way. This invariant quantity ds may be measured by means of measuring-rods and clocks.

Four-Dimensional Geometry.--On the invariant ds a four-dimensional geometry may be built up which is in a large measure analogous to Euclidean geometry in three dimensions. In this way physics becomes a sort of statics in a four-dimensional continuum. Apart from the difference in the number of dimensions the latter continuum is distinguished from that of Euclidean geometry in that ds2 may be greater or less than zero. Corresponding to this we differentiate between time-like and space-like line-elements. The boundary between them is marked out by the element of the "light-cone" ds2 = 0 which starts out from every point. If we consider only elements which belong to the same time-value, we have

-ds2 = dx2 +dy2 +dz2

These elements ds may have real counterparts in distances at rest and, as before, Euclidean geometry holds for these elements.

Effect of Relativity, Special and General.--This is the modification which the doctrine of space and time has undergone through the restricted theory of relativity. The doctrine of space has been still further modified by the general theory of relativity, because this theory denies that the three-dimensional spatial section of the space-time continuum is Euclidean in character. Therefore it asserts that Euclidean geometry does not hold for the relative positions of bodies that are continuously in contact.

For the empirical law of the equality of inertial and gravitational mass led us to interpret the state of the continuum, in so far as it manifests itself with reference to a non-inertial system, as a gravitational field and to treat non-inertial systems as equivalent to inertial systems. Referred to such a system, which is connected with the inertial system by a non-linear transformation of the co-ordinates, the metrical invariant ds2 assumes the general form:--

ds2 = ¸μvgμvdxμdxv

where the gμv's are functions of the co-ordinates and where the sum is to be taken over the indices for all combinations 11, 12, . . .44. The variability of the gμ v's is equivalent to the existence of a gravitational field. If the gravitational field is sufficiently general it is not possible at all to find an inertial system, that is, a co-ordinate system with reference to which ds2 may be expressed in the simple form given above:--

ds2 = c2dt2 - dx2 - dy2 - dz2

But in this case, too, there is in the infinitesimal neighbourhood of a space-time point a local system of reference for which the last-mentioned simple form for ds holds.

This state of the facts leads to a type of geometry which Riemann's genius created more than half a century before the advent of the general theory of relativity of which Riemann divined the high importance for physics.

169.5

www.guardiantext.org

 PreviousTable of ContentsNext

Home